Dependence of Bilevel Programming on Irrelevant Data
نویسندگان
چکیده
In 1997, Macal and Hurter [7] have found that adding a constraint to the lower level problem, which is not active at the computed global optimal solution, can destroy global optimality. In this paper this property is reconsidered and it is shown that this solution remains locally optimal under inner semicontinuity of the original solution set mapping. In the second part of the paper we prove that adding a variable in the linear lower level problem can also destroy global optimality. But here the solution remains locally optimal, provided the optimal solution in the lower level was dual non-degenerated.
منابع مشابه
Simulated Annealing Approach for Solving Bilevel Programming Problem
Bilevel programming, a tool for modeling decentralized decision problems, consists of the objective of the leader at its first level and that of the follower at the second level. Bilevel programming has been proved to be an Np-hard problem. Numerous algorithms have been developed for solving bilevel programming problems. These algorithms lack the required efficiency for solving a real problem. ...
متن کاملBILEVEL LINEAR PROGRAMMING WITH FUZZY PARAMETERS
Bilevel linear programming is a decision making problem with a two-level decentralized organization. The textquotedblleft leadertextquotedblright~ is in the upper level and the textquotedblleft followertextquotedblright, in the lower. Making a decision at one level affects that at the other one. In this paper, bilevel linear programming with inexact parameters has been studied and a method is...
متن کاملA New Approach for Solving Fully Fuzzy Bilevel Linear Programming Problems
This paper addresses a type of fully fuzzy bilevel linear programming (FFBLP) wherein all the coefficients and decision variables in both the objective function and constraints are triangular fuzzy numbers. This paper proposes a new simple-structured, efficient method for FFBLP problems based on crisp bilevel programming that yields fuzzy optimal solutions with unconstraint variables and parame...
متن کاملA New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints
Most research on bilevel linear programming problem is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملSimulated Annealing Approach for Solving Bilevel Programming Problem
Bilevel programming, a tool for modeling decentralized decision problems, consists of the objective of the leader at its first level and that of the follower at the second level. Bilevel programming has been proved to be an Np-hard problem. Numerous algorithms have been developed for solving bilevel programming problems. These algorithms lack the required efficiency for solving a real problem. ...
متن کامل